I introduce an extension of the Lewis-Skyrms signaling game, analysed from a dynamical perspective via simple reinforcement learning. In Lewis’ (Convention, Blackwell, Oxford, 1969) conception of a signaling game, salience is offered as an explanation for how individuals may come to agree upon a linguistic convention. Skyrms (Signals: evolution, learning & information, Oxford University Press, Oxford, 2010a) offers a dynamic explanation of how signaling conventions might arise presupposing no salience whatsoever. The extension of the atomic signaling game examined here—which I will refer to as a salience game—introduces a variable parameter into the atomic signaling game which allows for degrees of salience, thus filling in the continuum between Skyrms’ and Lewis’ models. The model does not presuppose any salience at the outset, but illustrates a process by which accidentally evolved salience is amplified, to the benefit of the players. It is shown that increasing degrees of salience allow populations to avoid sub-optimal pooling equilibria and to coordinate upon conventions more quickly.
Thursday, March 29, 2018
Grice's Semiotics: H. P. Grice and J. L. Speranza
Speranza
I introduce an extension of the Lewis-Skyrms signaling game, analysed from a dynamical perspective via simple reinforcement learning. In Lewis’ (Convention, Blackwell, Oxford, 1969) conception of a signaling game, salience is offered as an explanation for how individuals may come to agree upon a linguistic convention. Skyrms (Signals: evolution, learning & information, Oxford University Press, Oxford, 2010a) offers a dynamic explanation of how signaling conventions might arise presupposing no salience whatsoever. The extension of the atomic signaling game examined here—which I will refer to as a salience game—introduces a variable parameter into the atomic signaling game which allows for degrees of salience, thus filling in the continuum between Skyrms’ and Lewis’ models. The model does not presuppose any salience at the outset, but illustrates a process by which accidentally evolved salience is amplified, to the benefit of the players. It is shown that increasing degrees of salience allow populations to avoid sub-optimal pooling equilibria and to coordinate upon conventions more quickly.
I introduce an extension of the Lewis-Skyrms signaling game, analysed from a dynamical perspective via simple reinforcement learning. In Lewis’ (Convention, Blackwell, Oxford, 1969) conception of a signaling game, salience is offered as an explanation for how individuals may come to agree upon a linguistic convention. Skyrms (Signals: evolution, learning & information, Oxford University Press, Oxford, 2010a) offers a dynamic explanation of how signaling conventions might arise presupposing no salience whatsoever. The extension of the atomic signaling game examined here—which I will refer to as a salience game—introduces a variable parameter into the atomic signaling game which allows for degrees of salience, thus filling in the continuum between Skyrms’ and Lewis’ models. The model does not presuppose any salience at the outset, but illustrates a process by which accidentally evolved salience is amplified, to the benefit of the players. It is shown that increasing degrees of salience allow populations to avoid sub-optimal pooling equilibria and to coordinate upon conventions more quickly.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment